Nitrogen flux and sources in the Mississippi River Basin.
نویسندگان
چکیده
Nitrogen from the Mississippi River Basin is believed to be at least partly responsible for the large zone of oxygen-depleted water that develops in the Gulf of Mexico each summer. Historical data show that concentrations of nitrate in the Mississippi River and some of its tributaries have increased by factors of 2 to more than 5 since the early 1900s. We have used the historical streamflow and concentration data in regression models to estimate the annual flux of nitrogen (N) to the Gulf of Mexico and to determine where the nitrogen originates within the Mississippi Basin. Results show that for 1980-1996 the mean annual total N flux to the Gulf of Mexico was 1,568,000 t/year. The flux was approximately 61% nitrate as N, 37% organic N, and 2% ammonium as N. The flux of nitrate to the Gulf has approximately tripled in the last 30 years with most of the increase occurring between 1970 and 1983. The mean annual N flux has changed little since the early 1980s, but large year-to-year variations in N flux occur because of variations in precipitation. During wet years the N flux can increase by 50% or more due to flushing of nitrate that has accumulated in the soils and unsaturated zones in the basin. The principal source areas of N are basins in southern Minnesota, Iowa, Illinois, Indiana, and Ohio that drain agricultural land. Basins in this region yield 800 to more than 3100 kg total N/km2 per year to streams, several times the N yield of basins outside this region. Assuming conservative transport of N in the Mississippi River, streams draining Iowa and Illinois contribute on average approximately 35% of the total N discharged by the Mississippi River to the Gulf of Mexico. In years with high precipitation they can contribute a larger percentage.
منابع مشابه
Relating net nitrogen input in the Mississippi River basin to nitrate flux in the lower Mississippi River: a comparison of approaches.
A quantitative understanding of the relationship between terrestrial N inputs and riverine N flux can help guide conservation, policy, and adaptive management efforts aimed at preserving or restoring water quality. The objective of this study was to compare recently published approaches for relating terrestrial N inputs to the Mississippi River basin (MRB) with measured nitrate flux in the lowe...
متن کاملNutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs1
SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some ...
متن کاملPredicting the response of Gulf of Mexico hypoxia to variations in Mississippi River nitrogen load
The effects of nutrient loading from the Mississippi River basin on the areal extent of hypoxia in the northern Gulf of Mexico were examined using a novel application of a dissolved oxygen model for a river. The model, driven by river nitrogen load and a simple parameterization of ocean dynamics, reproduced 17 yr of observed hypoxia location and extent, subpycnocline oxygen consumption, and cro...
متن کاملNitrate in the Mississippi River and Its Tributaries, 1980 to 2008: Are We Making Progress?
Changes in nitrate concentration and flux between 1980 and 2008 at eight sites in the Mississippi River basin were determined using a new statistical method that accommodates evolving nitrate behavior over time and produces flow-normalized estimates of nitrate concentration and flux that are independent of random variations in streamflow. The results show that little consistent progress has bee...
متن کاملAnthropogenic point-source and non-point-source nitrogen inputs into Huai River basin and their impacts on riverine ammonia–nitrogen flux
This study provides a new approach to estimate both anthropogenic non-point-source and point-source nitrogen (N) inputs to the landscape, and determines their impacts on riverine ammonia–nitrogen (AN) flux, providing a foundation for further exploration of anthropogenic effects on N pollution. Our study site is Huai River basin of China, a watershed with one of the highest levels of N input in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Science of the total environment
دوره 248 2-3 شماره
صفحات -
تاریخ انتشار 2000